ПЕТР I
8
All posts from ПЕТР I
ПЕТР I in Петр I,

Оппозиционные нумерологи атакуют Саратов

Академик Фоменко — доктор физико-математических наук, профессор, специалист в области дифференциальной геометрии и топологии. Работает в МГУ, причём не просто в МГУ, а на Мехмате, одном из самых уважаемых факультетов. Под руководством господина Фоменко были защищены более 60 диссертаций. Пожалуй, можно твёрдо заключить, что академик Фоменко внёс значительный вклад в развитие советской и российской математики.

Однако знаменит господин Фоменко, к сожалению, отнюдь не своими математическими трудами. Знаменит он так называемой «Новой хронологией» — причудливой теорией, согласно которой вся мировая история выглядит «на самом деле» совершенно иначе. Согласно Фоменко, например, Древнего Рима и Древней Греции просто не было, а, например, Чингисхан и Рюрик — это одно лицо.

http://ruxpert.ru/Гауссиана
Более склонных к рефлексии людей этот щелчок по носу заставил бы остановиться, однако наша прозападная оппозиция к рефлексии не склонна совершенно. Поэтому они сделали новое сильное заявление — теперь им не нравятся результаты выборов в Саратове, где голоса избирателей, видите ли, ложатся слишком кучно.

Знаете, в чём заключается одна из главных причин постоянных поражений несистемной оппозиции? В том, что они считают себя интеллектуальной элитой, а остальных, соответственно, имбецилами. По их мнению некий главный фальсификатор отдал приказ — «нарисуйте на каждом участке в Саратове ровно 62,2% голосов» — и члены 100 избирательных комиссий взяли под козырёк, послушно нарисовав нужное число.

Сейчас я даже не хочу сказать, что на каждом участке в Саратове сидели наблюдатели от разных партий, и что чисто технически выполнить этот странный приказ было бы невероятно сложно — про это я скажу чуть позже. Я хочу обратить внимание на другое обстоятельство. Будучи людьми достаточно среднего ума, оппозиционеры считают неприятных им людей совсем уж дураками, которые фальсифицируют результаты, совсем не заботясь о красоте итоговой картинки. Вместе с тем минимально объективному наблюдателю вполне очевидно, что если бы власть и в самом деле ставила задачу что-то там фальсифицировать, можно было бы сделать это гораздо проще и красивее: упростив, например, процедуру голосования до уровня западных стран.

Перейдём теперь к разоблачению тех шарлатанских приёмов, при помощи которых прозападная оппозиция пытается сейчас дискредитировать выборы в Саратове.

Для иллюстрации продемонстрирую другую известную шутку шарлатанов — обоснование мистической связи между Гитлером и Наполеоном. Выглядит она так:

Наполеон родился в 1760 г.
Гитлер родился в 1889 г.
(разница 129 лет)

Наполеон пришел к власти в 1804 г.
Гитлер пришел к власти в 1933 г.
(разница 129 лет)

Наполеон вошел в Вену в 1812 г.
Гитлер вошел в Вену в 1941 г.
(разница 129 лет)

Наполеон проиграл войну в 1816 г.
Гитлер проиграл войну в 1945 г.
(разница 129 лет)

Оба пришли к власти, когда им было по 44 года.
Оба напали на Россию, когда им было по 52 года.
Оба проиграли войну, когда им было по 56 лет.

Что в этом примере не так?

Первое — Наполеон родился в 1769 году, а не 1760. Проиграл в сражении при Ватерлоо и отрёкся от престола Наполеон в 1815 году, а не в 1816. Остальные даты тоже подогнаны молоточком под нужные шарлатанам значения.

Второе — никак не показана природа связи между Гитлером и Наполеоном. Идёт отсылка к какой-то неведомой человечеству мистике.

Третье — любые логичные совпадения объявляются невероятными. Вместе с тем вполне очевидно, что пришедшие к власти во взрослом возрасте диктаторы могут иметь довольно схожую биографию. Примерно в 40 лет пришёл к власти, примерно в 55-60 лет проиграл важную войну. Ничего странного тут нет.

Теперь давайте посмотрим на «доказательство» фальсификации выборов в Саратове, на которое ссылается господин Навальный. Основывается оно вот на этой статье:

http://kireev.livejournal.com/1300008.html


Краткая суть — на некоторых участках результаты совпадают, следовательно там эти результаты «нарисованы от руки»:

Было бы наивно полагать, что рисование, а не просто фальсификация результатов, будут только в республиках. Пожалуй, это самый большой по объему случай рисования результатов в русских областях из тех, что я помню. Таблица всех участков города под катом (кроме спец. участков). Опять же жирным шрифтом я отметил копирующиеся результаты. Я знаю: не все, но достаточно для того, чтобы понять смысл происходящего. На некоторых участках, однако, результаты выглядят нормально — я их тоже отметил. Но все же подавляющая часть участков — явно нарисованные. Саратов все же город немаленький: то есть сотнями тысяч голосов просто подтерлись. Люди зря шли на участки, даже голоса за Единую Россию учтены не были. Я это называю «интеллектуальным банкротством», если, конечно, они за ЕР голосовали добровольно.

В качестве обоснования своего сильного утверждения автор «разоблачения» указывает, что на значительном количестве участков были получены результаты близкие к отметке 62,2%.

Что тут не так?

Первое — как это обычно и бывает, исходные данные неточны. В Саратове 370 избирательных участков:

http://saroblnews.ru/news-archive/i60666-vybory-2016-v-sarat...

У разоблачителя в блоге есть таблица со списком участков. Беглый подсчёт показал, что там участков… 275. Уже странно. Дальше я пошёл по ссылке на исходники, которую приложил автор разоблачения к посту, загрузил данные в Excel. Получилось… 328 участков. То есть, чуть ли не треть данных была автором просто отброшена — то ли из-за запредельной для объективного исследователя неряшливости, то ли из желания представить нужную автору картину с красивого ракурса.

Также цифры подгонялись под нужный результат при помощи округления. На сайте избирательной комиссии цифры указаны с точностью до сотых, у разоблачителей уже десятые. Почему десятые? Потому что если не отбрасывать один знак, то совпадений особо нет, сенсации не получается.

Второе — не показано, каким же образом были «нарисованы» результаты. Вот тут участница процесса подробно рассказывает, как идёт ход голосования:

http://fritzmorgen.livejournal.com/925307.html?thread=468161...

Если вкратце, урны прозрачные, всё учитывается и записывается. Вбросить незаметно крайне тяжело, переписать результаты ещё сложнее, а уж подогнать результаты под заранее заданное число и вовсе невозможно. Количество бюллетеней в урне сверяется с количеством подписей избирателей, если бюллетеней оказывается больше, чем подписей, результат аннулируется.

Каким же способом, по мнению оппозиционеров, получилось «переписать результаты»?

Все наблюдатели в Саратове, даже от оппозиционных партий, состоят в одной большой организации заговорщиков? Или, может быть, у «Единой России» есть инопланетные технологии, бюллетени заменяются в урнах удалённо, при помощи пси-нуль-транспортировки? Пусть разоблачитель выдвинет хотя бы версию — как конкретно, по его мнению, происходила одновременная фальсификация на сотне участков. А то получается как с жуликами из WADA — «мы уверены, что пробирки вскрывали, но как именно, показать не можем, это какая-то особая русская магия».

Наконец, третье. Попытка при помощи модели сферического коня в вакууме прогнозировать результаты реальных забегов. Процитирую фрагмент из книги Якова Перельмана, которой я зачитывался в детстве. Фрагмент длинный, но не пугайтесь, чтение занятно и увлекательно:

В столовой дома отдыха зашла за обедом речь о том, как вычисляется вероятность событий. Молодой математик, оказавшийся среди обедающих, вынул монету и сказал:
— Кидаю на стол монету, не глядя. Какова вероятность, что она упадёт гербом вверх?
— Объясните сначала, что значит «вероятность»,— раздались голоса.— Не всем ясно.
— О, это очень просто! Монета может лечь на стол двояко: вот так — гербом вверх и вот так — гербом вниз.
Всех случаев здесь возможно только два. Из них для интересующего нас события благоприятен лишь один случай.
Дробь 1/2 и выражает «вероятность» того, что монета упадёт гербом вверх.
— С монетой-то просто,— вмешался кто-то.— А вы рассмотрите случай посложней, с игральной костью, например.
— Давайте, рассмотрим,— согласился математик.— У нас игральная кость, кубик с цифрами на гранях. Какова вероятность, что брошенный кубик упадёт определённой цифрой вверх, скажем — вскроется шестёркой? Сколько здесь всех возможных случаев? Кубик может лечь на любую из своих шести граней; значит, возможно всего 6 случаев. Из них благоприятен нам только один: когда вверху шестёрка. Итак, вероятность получится от деления 1 на 6. Короче сказать, она выражается дробью 1/6.
— Неужели можно вычислить вероятность во всех случаях? — спросила одна из отдыхающих.— Возьмите такой пример. Я загадала, что первый прохожий, которого мы увидим из окна столовой, будет мужчина. Какова вероятность, что я отгадала?
— Вероятность, очевидно, равна половине, если только мы условимся и годовалого мальчика считать за мужчину. Число мужчин на свете равно числу женщин.
— А какова вероятность, что первые двое прохожих окажутся оба мужчины? — спросил один из отдыхающих.
— Этот расчёт немногим сложнее. Перечислим, какие здесь вообще возможны случаи. Во-первых, возможно, что оба прохожих будут мужчины. Во-вторых, что сначала покажется мужчина, за ним женщина. В-третьих, наоборот: что раньше появится женщина, потом мужчина. И, наконец, четвёртый случай: оба прохожих — женщины. Итак, число всех возможных случаев — 4. Из них благоприятен, очевидно, только один случай — первый. Получаем для вероятности дробь 1/4. Вот ваша задача и решена.
— Понятно. Но можно поставить вопрос и о трёх мужчинах: какова вероятность, что первые трое прохожих все окажутся мужчины?
— Что же, вычислим и это. Начнём опять с подсчёта возможных случаев. Для двоих прохожих число всех случаев равно, мы уже знаем, четырём. С присоединением третьего прохожего число возможных случаев увеличивается вдвое, потому что к каждой из 4 перечисленных группировок двух прохожих может присоединиться либо мужчина, либо женщина. Итого, всех случаев возможно здесь 8. А искомая вероятность, очевидно, равна 1/8, потому что благоприятен событию только 1 случай.
— Чему же она равна, например, для десятка прохожих?
— То есть какова вероятность, что первые десять прохожих все подряд окажутся мужчинами? Вычислим, как велико произведение десяти половинок. Это 1/1024, менее одной тысячной доли. Значит, если вы бьётесь о заклад, что это случится, и ставите 1 рубль, то я могу ставить 1000 рублей за то, что этого не произойдёт.
— Выгодное пари! — заявил чей-то голос.— Я бы охотно поставил рубль, чтобы получить возможность выиграть целую тысячу.
— Но имеется тысяча шансов против вашего одного, учтите и это.
— Ничего не значит. Я бы рискнул рублём против тысячи даже и за то, что сотня прохожих окажутся все подряд мужчинами.
— А вы представляете себе, как мала вероятность такого события? — спросил математик.
— Одна миллионная или что-нибудь в этом роде?
— Неизмеримо меньше! Миллионная доля получится уже для 20 прохожих. Для сотни прохожих будем иметь… Дайте-ка, я прикину на бумажке. Биллионная… Триллионная… Квадрильонная… Ого! Единица с тридцатью нулями!
— Только всего?
— Вам мало 30 нулей? В океане нет и тысячной доли такого числа мельчайших капелек.
— Внушительное число, что и говорить! Сколько же вы поставите против моего рубля?
— Ха-ха!… Все! Все, что у меня есть.
— Все — это слишком много. Ставьте на кон ваш велосипед. Ведь не поставите?
— Почему же нет? Пожалуйста! Пусть велосипед, если желаете. Я нисколько не рискую.
— И я не рискую. Не велика сумма рубль. Зато могу выиграть велосипед, а вы почти ничего.
— Да поймите же, что вы наверняка проиграете! Велосипед никогда вам не достанется, а рубль ваш можно сказать уже в моём кармане.
— Что вы делаете!— удерживал математика приятель.— Из-за рубля рискуете велосипедом. Безумие!
— Напротив,— ответил математик,— безумие ставить хотя бы один рубль при таких условиях. Верный ведь проигрыш! Уже лучше прямо выбросить рубль.
— Но один-то шанс все же имеется?
— Одна капля в целом океане. В десяти океанах! Вот ваш шанс. А за меня десять океанов против одной капельки. Мой выигрыш так же верен, как дважды два — четыре.
— Увлекаетесь, молодой человек,— раздался спокойный голос старика, все время молча слушавшего спор.— Увлекаетесь…
— Как? И вы, профессор, рассуждаете по-обывательски?
— Подумали ли вы о том, что не все случаи здесь равновозможны? Расчёт вероятности правилен лишь для каких событий? Для равновозможных, не так ли? А в рассматриваемом примере… Впрочем,— сказал старик, прислушиваясь,— сама действительность, кажется, сейчас разъяснит вам вашу ошибку. Слышна военная музыка, не правда ли?
— Причём тут музыка?..— начал было молодой математик и осекся. На лице его выразился испуг. Он сорвался с места, бросился к окну и высунул голову.
— Так и есть! — донёсся его унылый возглас.— Проиграно пари! Прощай мой велосипед…
Через минуту всем стало ясно, в чем дело. Мимо окон проходил батальон солдат.

Повторюсь, наши оппозиционеры упорно не понимают, что реальная жизнь — это не игра в покер, а избиратели — это не стальные шарики в рулетке. Если бы мы кидали монетки с крыши дома на асфальт, было бы очень странно, если бы из тысячи монеток вся тысяча выпала бы орлом в низ. Однако если на избирательном участке в негритянском гетто 100% избирателей голосует за Обаму, тут ничего особо удивительного уже нет.

Так и в Саратове — не все случаи равновозможны, поэтому нет ничего удивительного в том, что предпочтения избирателей из одного города на многих участках оказались примерно одинаковыми.

Идём дальше. Господин Навальный заявил, цитирую, «вероятность такого примерно соответствует вашим шансам кинуть с Земли теннисный мяч и попасть в глаз гуманоиду с планеты Омикрон Персей-8. То есть это в принципе невозможно».

Мне, как увлекавшемуся в своё время комбинаторикой и теорией вероятностей человеку, сразу хочется задать вопрос — а можно ознакомиться с расчётами и увидеть точный результат? Какова вероятность того, что на на трети участков в Саратове результаты одной из 14 партий лягут рядом? 10%? 3%? Городов-то в России много, выборы проводятся регулярно, а играя с количеством участков и степенью округления можно достаточно легко найти «аномалию» на любом графике…

Я понимаю, на точный расчёт уйдёт некоторое время, и делать его должен будет не математик, а профильный специалист — специалист по псефологии и электоральной географии — однако ничего сверхсложного я тут не вижу. Взять и подсчитать.

Для понятности расскажу ещё об одном неизвестном оппозиционным нумерологам явлении, о так называемом «парадоксе дней рождения». Представьте себе класс из 23 учеников. Как полагаете, какова вероятность того, что хотя бы у двух учеников полностью совпадут дни рождения? Оказывается, больше половины. А в группе из 60 человек вероятность того, что хотя бы у двух дни рождения будут одинаковы, уже превышает 99%:

https://ru.wikipedia.org/wiki/Парадокс_дней_рождения

Казалось бы, это уже даёт нам ключ к ответу на вопрос «почему на разных участках получились близкие результаты». Однако давайте приблизим задачу к реальной жизни. Представьте, что дело происходит в Бразилии, в которой, как известно, каждый год проходит знаменитый карнавал, праздник музыки и любви.

Как полагаете, какова вероятность, что у нескольких детей в классе в бразильской школе дата рождения будет отстоять примерно на 9 месяцев от даты карнавала?

Подведу итог

Выборы в России организованы максимально прозрачно, мы прошли огромный путь за последние 10 лет. КОИБы, защищённые бюллетени, продуманная система наблюдателей… Россия обладает сейчас если не лучшей в мире избирательной инфраструктурой, то одной из лучших — читатели из-за рубежа подтвердят в комментариях, это общеизвестный факт.

Поэтому вот так сходу заявлять, будто в одном из сотен городов России цифры легли как-то странно, и будто это якобы железно доказывает массовые фальсификации... извините, такого рода утверждения являются шарлатанством в чистом виде. Не нужно дискредитировать науку, пытаясь оправдать своё разгромное поражение псевдонаучными построениями.

Напоследок повторю главный аргумент, отбить который оппозиционные нумерологи, полагаю, будут не в состоянии. Они утверждают, будто вероятность того расклада, который мы увидели на выборах в Саратове, исчезающе мала, однако при этом не предоставляют никаких доказательств того, что этот расклад и вправду невероятен.

Просто попросите их показать вам полноценный расчёт шансов, с учётом электоральной географии и теории вероятностей. Они или не смогут этого сделать, или вынуждены будут признать, что никаких оснований для заявлений о фальсификации выборов в Саратове у них нет.